Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia.
نویسندگان
چکیده
Burkholderia cenocepacia is an opportunistic pathogen that causes chronic infection and induces progressive respiratory inflammation in cystic fibrosis patients. Recognition of bacteria by mononuclear cells generally results in the activation of caspase-1 and processing of IL-1β, a major proinflammatory cytokine. In this study, we report that human pyrin is required to detect intracellular B. cenocepacia leading to IL-1β processing and release. This inflammatory response involves the host adapter molecule ASC and the bacterial type VI secretion system (T6SS). Human monocytes and THP-1 cells stably expressing either small interfering RNA against pyrin or YFP-pyrin and ASC (YFP-ASC) were infected with B. cenocepacia and analyzed for inflammasome activation. B. cenocepacia efficiently activates the inflammasome and IL-1β release in monocytes and THP-1. Suppression of pyrin levels in monocytes and THP-1 cells reduced caspase-1 activation and IL-1β release in response to B. cenocepacia challenge. In contrast, overexpression of pyrin or ASC induced a robust IL-1β response to B. cenocepacia, which correlated with enhanced host cell death. Inflammasome activation was significantly reduced in cells infected with T6SS-defective mutants of B. cenocepacia, suggesting that the inflammatory reaction is likely induced by an as yet uncharacterized effector(s) of the T6SS. Together, we show for the first time, to our knowledge, that in human mononuclear cells infected with B. cenocepacia, pyrin associates with caspase-1 and ASC forming an inflammasome that upregulates mononuclear cell IL-1β processing and release.
منابع مشابه
A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation.
Burkholderia cenocepacia is an opportunistic pathogen of the cystic fibrosis lung that elicits a strong inflammatory response. B. cenocepacia employs a type VI secretion system (T6SS) to survive in macrophages by disarming Rho-type GTPases, causing actin cytoskeletal defects. Here, we identified TecA, a non-VgrG T6SS effector responsible for actin disruption. TecA and other bacterial homologs b...
متن کاملBurkholderia cenocepacia Type VI Secretion System Mediates Escape of Type II Secreted Proteins into the Cytoplasm of Infected Macrophages
Burkholderia cenocepacia is an opportunistic pathogen that survives intracellularly in macrophages and causes serious respiratory infections in patients with cystic fibrosis. We have previously shown that bacterial survival occurs in bacteria-containing membrane vacuoles (BcCVs) resembling arrested autophagosomes. Intracellular bacteria stimulate IL-1β secretion in a caspase-1-dependent manner ...
متن کاملFrancisella Recognition by Inflammasomes: Differences between Mice and Men
Pathogen recognition by intracellular sensors involves the assembly of a caspase-1 activation machine termed the inflammasome. Intracellular pathogens like Francisella that gain access to the cytosolic detection systems are useful tools to uncover the details of caspase-1 activation events. This review overviews Francisella function in the mononuclear phagocyte with particular attention to infl...
متن کاملRibotoxic stress through p38 mitogen-activated protein kinase activates in vitro the human pyrin inflammasome.
Human pyrin with gain-of-function mutations in its B30.2/SPRY domain causes the autoinflammatory disease familial Mediterranean fever by assembling an ASC-dependent inflammasome that activates caspase-1. Wild-type human pyrin can also form an inflammasome complex with ASC after engagement by autoinflammatory PSTPIP1 mutants. How the pyrin inflammasome is activated in the absence of disease-asso...
متن کاملInhibitory effects of Cheonggukjang extracts on radiation-induced micronucleus formation and inflammasome activation
Background: People are exposed to more radiation than before with the application of radiation technology. Radiation is known to induce damage to cell structure, DNA, chromosomes and nucleus. In this study, we showed that CGJ extract can inhibit radiation-induced chromosomal damage in vivo and NLRP7 inflammasome activation in vitro, suggesting that the compound from CGJ can Be considered as a t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 188 7 شماره
صفحات -
تاریخ انتشار 2012